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Abstract

The literature on forecasting tax revenues focuses on the need for a body of competing
forecasts independent of government, to limit potential political bias. The O�ce for Budget
Responsibility does provide detailed independent forecasts for the UK but there are limited
alternatives. The literature on appropriate techniques for forecasting detailed tax revenues is
under-developed. In many countries tax revenue forecasts are embedded in a more extensive
macro-economic forecasting model. These models lack su�cient precision for revenue fore-
casting revenues for several specific taxes. Such models are too involved to support a body
of competing independent forecasts. In consequence there is an established need for single
equation revenue forecasts for specific taxes to complement the macro-economic approach.
This study considers the use of a number of (mainly) time series forecasting techniques. We
find Recurrent Singular Spectrum Analysis (RSSA) to perform the best of the techniques
considered.

Keywords: United Kingdom; Income Tax; Forecasting; Singular Spectrum Analysis; ARIMA;
Exponential Smoothing; Neural Networks.

1 Introduction

Two key themes emerge from the existing literature on forecasting tax revenues and the related
literature on budget forecasting. Firstly, the literature stresses the need for independent forecasts
and, in particular, a body of competing independent forecasts. Secondly, techniques for tax
forecasting are acknowledged in the literature as being currently under-developed. Some authors
such as Buettner and Kauder argue in favour of tax forecasts embedded within wider macro-
economic models [1]. Other authors such as Bretschneider et al have argued in favour of simple
econometric models [2].

The debate about appropriate techniques does not just concern issues of accuracy or e�ciency
of the forecasts but also some pragmatic issues. For example, Leal et al express the view that
macro-economic models are often too aggregated to provide detailed revenue projections [3].
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In this paper we consider the use of direct estimation using a number of (mainly) time series
approaches. We examine the scope for using time series forecasting techniques as a contribution
to the body of independent forecasting. Macro-economic models have undeniable advantages
but are complex and costly. Only few organisations have the resources to maintain them. The
intention of this paper is to assess the performance of a number of di↵erent direct (not embedded
within a macro model) forecasting techniques. The purpose is to ask the question: Can time
series forecasting make a valid contribution to the body of tax revenue forecasts?
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Figure 1: Total monthly UK Income Tax time series (Jan. 2002 - Sep. 2016).

To do this we evaluate the performance of a number of di↵erent direct forecasting techniques
relative to each other and relative to the forecasts for UK tax revenues produced by the O�ce for
Budget Responsibility. The remainder of this paper is organised as follows. Section 2 reviews the
relevant literature. Section 3 provides the details of the main forecasting techniques employed.
Section 4 describes the data for UK income tax and discusses the measures for evaluating the
forecasting performance. Section 5 covers the empirical results and conclusions are provided in
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section 6.

2 Review of Literature

As Leal et al note the literature on forecasting tax revenues has two main themes [3]. The
first of these, as with the wider issue of budget forecasting, is that forecasts are often perceived
as biased for politically motivated reasons. For the UK politically motivated bias less of a
concern than for some countries since the establishment of the independent O�ce for Budget
Responsibility in 2010. The second main theme that Leal et al identify concerns appropriate
forecasting techniques [3]. As they note this literature is under-developed and yet to reach
definitive conclusions. The focus of this paper is on this second strand in the literature.

The debate on perceived political bias and appropriate techniques for tax forecasting is not
new. Auerbach in a study of government revenue forecasts in the US, found little di↵erence be-
tween the performance of government and independent forecasters, suggesting a lack of political
bias [4]. The study did, however, find a need for better forecasting performance. In particular
the need for an improved dynamic specification was emphasized.

Buettner and Kauder reviewed the practice and performance of revenue forecasts for a num-
ber of OECD countries [1]. Their study found two key factors to reduce forecast errors: the
use of a macro-economic model and independence from government. They found a number of
common strands across countries. In particular, most countries adopted a mixed approach of
using a macro-economic model to forecast those taxes most likely to be related to the business
cycle and direct (single equation) methods for other taxes.

Chatagny and Soguel provide an interesting bridge between the literature on tax revenue
forecasting and the related, wider literature on budget forecasting [5]. In a study of Swiss cantons
they found that systematic under forecasting of tax revenues was associated with reduced fiscal
deficits.

The literature on budget forecasting necessarily overlaps that of tax revenue forecasting with
respect to perceived political bias. There is also significant common ground with respect to the
use of macro-economic models for forecasting but there is one important di↵erence. For tax
revenues alone direct forecasts not embedded in a macro-economic model are not only feasible
but widely used (for at least some taxes). Budget forecasts are, of necessity, more complex. Artis
and Marcellino examined the performance of IMF, OECD and the EC, in forecasting budget
deficits (in relation to GDP) [6]. They found systematic under forecasting for some countries and
systematic over forecasting for others. Jonung and Larch found evidence of systematic political
bias in budget forecasts for EU countries [7]. These studies tend to further emphasise the role
of independent forecasters.
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3 Forecasting Methods

3.1 Singular Spectrum Analysis (SSA)

As proposed in [8] the two complementary stages of the SSA, i.e., the decomposition and recon-
struction stages can be carried out in four steps.

Step 1: Embedding
Embedding can be considered as a mapping that transfers a one-dimensional time series Y

N

=
(y1, . . . , yN ) into the multi-dimensional series X1, . . . , XK

with vectors X
i

= (y
i

, . . . , y

i+L�1)T 2
R

L, where L, (2  L  N�1) is the window length and K = N�L+1. This first step provides
the trajectory matrix X = [X1, . . . , XK

] = (x
ij

)L,K
i,j=1.

Step 2: SVD
In this step we perform the Singular Value Decomposition (SVD) of X into a sum of rank-one
bi-orthogonal elementary matrices, X = X1 + . . .+X

L

, with X
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Step 3: Grouping
The grouping step consists in splitting the elementary matrices in Step 2 into m disjoint groups
and summing the matrices within each group to obtain new matrices, W1, . . . ,Wm

, so that the
trajectory matrix X can be rewritten as: X = W1 + . . .+W

m

(see [9] for technical details.).

Step 4: Diagonal averaging
The purpose of diagonal averaging is to transform each new matrix (W

i(i=1,...,m)) to the form
of a Hankel matrix, which can be subsequently converted to a time series.

The selection of SSA choices of L and r, such that they are optimal, is of critical importance
to achieving the most accurate forecasts using the SSA technique. Thus, in this paper, we use the
RMSE criterion (see, Section 4.2) to determine the optimal L for decomposing the UK income
tax series, and the optimal r for reconstructing the filtered series to be used for forecasting
approach. Thus, a combination of L and r which gives the lowest RMSE, provides the optimal
choices for the SSA technique.1.

There are two versions of SSA forecasting approaches called Recurrent (RSSA) and Vector
(VSSA). The achieved optimal choices for VSSA and RSSA are presented in Table 1. Below, a
concise description of these two versions of forecasting algorithms has been provided.

3.1.1 Recurrent SSA

With the reconstructed series, ey
i

(i = 1, . . . , N), the recurrent SSA forecasts can be obtained as
follows:

1
The optimal SSA code used in this study is available upon request.
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Let denote ⇡
i

the last component of the eigenvector U
i

(i = 1, . . . , r) and v
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2
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1. Moreover suppose for any vector U 2 R
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j
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3.1.2 Vector SSA

Consider a matrix, ⇧, that is given by

⇧ = V

O(V O)T + (1� v

2)AAT

,

where V

O = [UO
1 , ..., U

O
r

], v2 and A are as defined above. Defining a linear operator ✓(v) : L
r

7!
R

L by the following formula

✓
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✓
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O

A
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◆
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The h-step ahead forecasts, y
N+1, ..., yN+h

, can be computed in two steps:
In the first step we define a vector Z

i

as follows:

Z

i

=

⇢ e
X

i

for i = 1, . . . ,K
✓

(v)
Z

i�1 for i = K + 1, . . . ,K + h+ L� 1
(2)

where, e
X

i

’s are the reconstructed columns of trajectory matrix.
In the second step we construct the matrix Z, as Z = [Z1, ..., Z

K+h+L�1], and make its
diagonal averaging to obtain a series y1, ..., y

N+h+L�1 that contain our VSSA forecasts.

3.2 Auto-Regressive Integrated Moving Average (ARIMA)

The Automatic-ARIMA which is an optimised version of Box and Jenkins (1970) ARIMA model
referred to as auto.arima provided by the forecast package in the R software has been adopted
in this study [10].

The three components (p, d, q) are the AR order, the degree of di↵erencing, and the MA
order. In Automatic-ARIMA, to determine the number of di↵erences d, KPSS unit root tests,
Augmented Dickey-Fuller (ADF) test or the Phillips-Perron (PP) unit root tests are applied
which among them the KPSS tests is known to give better forecasts in comparison to the ADF
and PP test [11, 12]. To determine the values for the order of autoregressive terms p, and the
order of the moving average process q, the algorithm then minimises the Akaike Information
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Criterion (AIC). The optimal model is chosen to be the model which represents the smallest AIC.
If the time series is nonstationary, then within the ARIMA(p,d,q) process the value of d � 1
and the Automatic-ARIMA forecasting algorithm accounts for this by taking first di↵erences of
the data until the data is stationary. If the data is stationary, then no di↵erencing is required,
and so d = 0 [11]. Table 1 shows the ARIMA model parameters used for forecasting the total
UK income tax.

A non-seasonal ARIMA model may be written as:

(1� �1B � . . .�

p

B

p)(1�B)dy
t

= c+ (1 + �1B + . . .+ �

q

B

q)e
t

, (3)

or

(1� �1B � . . .�

p

B

p)(1�B)d(y
t

� µt

d

/d!) = (1 + �1B + . . .+ �

q

B

q)e
t

, (4)

where µ is the mean of (1�B)d(y
t

, c = µ(1� �1 � . . .� �

p

) and B is the backshift operator. In
the R software, the inclusion of a constant in a non-stationary ARIMA model is equivalent to
inducing a polynomial trend of order d in the forecast function. It should be noted that when
d=0, µ is the mean of y

t

. According to hyndman2007automatic, the seasonal ARIMA model
can be expressed as:

�(Bm)�(B)(1�B

m)D(1�B)dy
t

= c+⇥(Bm)✓(B)✏
t

, (5)

where �(z) and ⇥(z) are the polynomials of orders P and Q, and ✏
t

is white noise. Note that
here if c 6= 0, there is an implied polynomial of order d+D in the forecast function. As mentioned
previously, to determine the values of p and q the AIC of the following form is minimised:

AIC = �2log(L) + 2(p+ q + P +Q+ k), (6)

where k = 1 if c 6= 0 and 0 otherwise and L represents the maximum likelihood of the fitted
model.

3.3 Exponential Smoothing (ETS)

In this study, we rely on the automated Exponential Smoothing (ETS) model provided in the
forecast package in R. In this model, the error, trend and seasonal components are considered
to determine the best exponential smoothing model from over 30 potential options following
optimizing initial values and parameters using the Maximum Liklihood Estimation (MLE) and
selecting the best model according to the AIC. Those interested in the several ETS formula’s that
are evaluated through the forecast package when selecting the best model to fit the residuals are
referred to Chapter 7, Table 7.8 in [11]. The ETS model parameters for forecasting UK income
tax are reported in Table 1 where ↵, �,� are the ETS smoothing parameters.
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3.4 Neural Networks (NN)

Our Neural Network (NN) models are estimated using an automatic forecasting model known
as nnetar which is provided through the forecast package in R programming code. A detailed
description of the model with explanation on the underlying dynamics can be found in [11]. The
NN takes the form

ŷ

t

= �̂0 +
kX

j=1

�̂

j

 (x
0
t

.�̂

j

), (7)

where x

t

consist of p lags of y
t

and the function  has the logistic form

 (x
0
t

.�̂

j

) = [1 + exp(��̂
j0 +

pX

i=1

�̂

ji

.y

t�1)]
�1

j = 1, . . . , k (8)

This form is often referred to as a one hidden layer feed forward NN model. As can be seen, the
nonlinearity arises through the lagged y

t

entering in a flexible way through the logistic functions
of (8). The number of logistic functions included, namely k, is known as the number of hidden
nodes.

The parameters in the NN model are determined according to a loss function embedded into
learning algorithm. This loss function could be for example RMSE as explained below under
Section 4.2. The nnetar function trains 25 networks by using random starting values. The
average of the resulting predictions will be counted as the forecasted points. The NN model
parameters are reported in Table 1 where p is the number of lagged inputs, P is the automatically
selected value for seasonal time series, and k is the number of nodes in the hidden layer. It is
of note that as evident in that table, in all cases the selected NN model has only k=1 hidden
node, p=1 lags suggesting that for the UK income tax a simple network model outperforms the
complex ones.

Table 1: Forecasting model parameters for total UK income tax.
h ARIMA(p, d, q) ETS(↵, �,�) NN(p, P, k) VSSA(L, r) RSSA(L, r)
1 (2,0,1)(0,1,1) (0.23,0.30,0.06) (1,1,1) (24,13) (34,14)
3 (2,0,1)(0,1,1) (0.23,0.30,0.06) (1,1,1) (47,21) (41,12)
6 (2,0,1)(0,1,1) (0.23,0.30,0.06) (1,1,1) (44,13) (42,12)
9 (2,0,1)(0,1,1) (0.23,0.30,0.06) (1,1,1) (44,20) (41,12)
12 (2,0,1)(0,1,1) (0.23,0.30,0.06) (1,1,1) (38,16) (39,12)
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4 The Data and Measures for Evaluating Forecast Accuracy

4.1 The Data

This paper employs the monthly UK income tax data from January 2002 to September 2016.
Table 2 provides the descriptives statistics of the data. According to that table, the average total
monthly UK income tax between January 2002-September 2016 was 12370.62. The maximum
value was recorded at 30271.69 in January 2016 and the minimum 6922.83 (in November 2002).
The data was tested for normality using the Shapiro-Wilk test and it was found that at a p-
value of 0.05 the data is not normally distributed. Also, according to the result of D’Agostino
skewness test, at a p-value of 0.05, the data is positively skewed. An analysis of the kurtosis
using the Anscombe-Glynn kurtosis test suggests that for this series the kurtosis is not equal to
3 and the series has a Leptokurtic distribution having a high probability for extreme values.

Table 2: Descriptive statistics: Total UK income tax (Jan. 2002 - Sep. 2016).
Mean Min. Max. Std. Dev. Skew. Kurtosis

12370.62 6922.83 30271.69 4377.39 1.72 3.27

It should also be noted that the method of linear interpolation has been applied to deal with
the two missing values in the time series (i.e. September and October 2004) [13].

The UK income tax series has also been evaluated for certain external shocks creating struc-
tural breaks and making the series nonstationary in mean and variance. According to Bai and
Perron test for structural breaks, we can see that the time series has been a↵ected by a structural
break in December 2006 [14].

4.2 Measures for Evaluating the Forecast Accuracy

Root Mean Squared Error (RMSE)

Mean Squared Error (MSE) is a widely used measure to assess the quality of an estimator. The
MSE always yields a non-negative value. The closer measure of MSE to zero defines the better
performance of the estimator.

It is more common to use the Root mean square error (RMSE) which simply is the square
root of MSE. RMSE is also a popular measure of accuracy to find the average of the squares of
the errors or deviations. RMSE has the same unit of measurement as the quantity under study.

In comparing two estimators (e.g. two forecasting methods in this study), it is advised to
adopt the Ratio of Root Mean Square Error (RRMSE) [15]. For example:

RRMSE =
RSSA

ETS

=

⇣P
N

i=1(byT+h,i

� y

T+h,i

)2
⌘1/2

⇣P
N

i=1(eyT+h,i

� y

T+h,i

)2
⌘1/2

,
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where, by
T+h

is the h-step ahead forecast obtained by RSSA, ey
T+h

is the h-step ahead forecast
from the ETS model, and N is the number of the forecasts. If RSSA

ETS

is less than 1, then the
SSA outperforms ETS by 1-RSSA

ETS

percent.

Mean Absolute Percentage Error (MAPE)

The MAPE measure is also quoted in this paper as it is a widely understood criterion for
evaluating forecast accuracy. In brief, the lower the MAPE result, the better the forecast.

MAPE =
1

N

NX

t=1

|100⇥
y

T+h

� by
T+h,i

y

T+h

|,

where y

T+h

represents the actual data corresponding to the h step ahead forecast, and by
T+h,i

is
the h step ahead forecasts obtained from a particular forecasting model.

5 Empirical Results

In this paper, the 2
3
rd

of the data has been considered as in-sample for model training and the
1
3
rd

of the data has been set aside as out-of-sample for evaluating the forecasting accuracy. To
e↵ectively evaluate the performance of the forecasting models both in the short and long run,
the data was forecasted at horizons of h = 1, 3, 6, 9 and 12 steps ahead which correspond to 1,
3, 6, 9 and 12 months ahead. Table 3 reports the RMSE results for the out-of-sample forecasts
of total UK income tax using VSSA, RSSA, ARIMA, ETS and NN.

Table 3: Out-of-sample RMSE results for total UK income tax.
h VSSA RSSA ARIMA ETS NN
1 795.63 800.15 858.96 1168.78 6276.50
3 751.90 698.86 820.99 1207.35 6007.29
6 731.60 667.90 762.11 983.85 7020.22
9 693.58 676.59 794.98 1253.00 6774.38
12 711.44 706.91 837.98 1167.54 7200.37

Average 736.83 710.08 815.01 1156.10 6655.75

based on the RMSE criterion, RSSA outperforms VSSA, ARIMA, ETS and NN by recording
the lowest forecasting error at all horizons except for h = 1 which VSSA reports a better result.
The nonparametric ETS model is the second worst performer and outperforms the NN model by
82%. Also, the less variation seen in the results reported by SSA confirms that SSA is the most
stable model in this case. The higher performance of the SSA technique could be explained by
its capability in reducing the noise level of a time series. SSA is a specialised filtering method
with the ability to decompose the UK income tax series and analyse the eigenvalues to precisely
identify and divide the noise from the signal. The appropriateness of the separation between
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signal and noise obtained using SSA was confirmed by the very small values of w-correlation,
confirming that the signal and its corresponding noise are almost w-orthogonal.

According to the MAPE criterion reported in Table 4, it is evident that the NN model is the
worst performer at all horizons with an overall average MAPE of 45.36%. The MAPE value of
5.5% reported for RSSA highlights the most accurate forecasts obtained by this model followed
by VSSA as the second best model for forecasting UK income tax with an average MAPE
of 5.73%. Accordingly, the superior performance of SSA technique at all forecasting horizons
portrays SSA’s capabilities of providing comparatively more accurate forecasts in both short
and long run.

Table 4: Out-of-sample MAPE results for total UK income tax.
h VSSA RSSA ARIMA ETS NN
1 6.11% 6.13% 6.13% 8.02% 42.58%
3 5.78% 5.34% 5.84% 8.56% 39.81%
6 5.29% 5.16% 6.03% 6.79% 47.11%
9 5.70% 5.29% 5.77% 9.16% 48.13%
12 5.77% 5.57% 6.17% 8.66% 50.54%

Average 5.73% 5.50% 5.99% 8.24% 45.63%

Having reported the RSSA as the best forecasting model for the UK income tax series, the
RRMSE values are obtained as RSSA

Alternativemethod

. To ensure that the achieved results are not
chance occurrences, the RRMSE results are further tested for statistical significance using the
modified Diebold-Mariano test [16]. Accordingly, we found that all the RRMSE results are
statistically significant at all horizons at a p-value of 0.05 and thus provides solid evidence for
the inferences we have made. However, the RRMSE results attributed to the RSSA

V SSA

are only
significant at a p-value of 0.1 highlighting the close performance of these two versions of the SSA
technique.

Table 5: The ratio of Out-of-sample RMSE results for total UK income tax.
h RSSA

V SSA
RSSA

ARIMA
RSSA
ETS

RSSA
NN

1 1.01** 0.93* 0.68* 0.13*
3 0.93** 0.85* 0.58* 0.12*
6 0.91** 0.88* 0.68* 0.10*
9 0.98** 0.85* 0.54* 0.10*
12 0.99** 0.84* 0.61* 0.10*

Average 0.96 0.87 0.62 0.11
Note:* indicates results are statistically significant based on Diebold-Mariano at p = 0.05.

** indicates results are statistically significant based on Diebold-Mariano at p = 0.1.

At the next step, the weighted correlation (w-correlation) statistic is used to show the appro-
priateness of the various decompositions achieved by RSSA According to [17], the w-correlation
statistic shows the dependence between two series and can be calculated as:
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Therefore, if the obtained w-correlation is close to 0, this confirms that the corresponding
series are w-orthogonal and that the two components are adequately separable [17]. However, if
the w-correlation between two reconstructed series are large, this confirms that the series are far
from being w-orthogonal, and are therefore not very well separable and the components should
be considered as one group.

Table 6: w-correlations between signal and residuals at di↵erent forecasting horizons.
Series 1 3 6 9 12
Total UK income tax 0.020 0.016 0.014 0.015 0.022

The w-correlation values reported in Table 6, further explains the outstanding performance
of the RSSA model. According to the small values of that table, the RSSA forecasting algorithm
is highly successful in separating the signal from the noise found in the total UK income tax
series.

6 Conclusion

The literature on tax revenue forecasting and the related literature on budget forecasting focus
on perceived political bias in forecasts. This results in a body of scholarly opinion in favour of
forecasts that are produced independently of government and, in particular, a body of indepen-
dent forecasts. Macro-economic models are widely used for forecasting overall tax revenues and,
often, for revenues from those individual taxes that are most closely linked to overall economic
activity. However, they lack su�cient precision to be used to forecast revenues from many in-
dividual taxes. Another limitation is the cost and complexity of building and maintaining a
macro-economic model. For these reasons a number of authors have emphasized the need for ef-
fective direct (not embedded in a wider model) techniques for forecasting revenues from specific
taxes. In this study we considered a number of di↵erent time series (mainly) direct forecasting
techniques. Using UK monthly data for income tax receipts from January 2002 to September
2016, we considered the performance of five di↵erent forecasting techniques with respect to in-
come tax receipts. Of these we found Recurrent Singular Spectrum Analysis (RSSA) to perform
the best. RSSA outperforms the other forecasting techniques with respect to both Root Mean
Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE).
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